by soha takrouri
Artwork: سهى تكروري
Copyright © 2020
في علم الجبر، يشير مصطلح الدالة التربيعيّة أو كثير الحدود التربيعيّ أو كثير الحدود من الدرجة الثانية أو ببساطة التربيعيّ إلى دالة كثير حدود بمتغير واحد أو أكثر، أعلى درجة فيه هي 2. على سبيل المثال، تحتوي الدالة التربيعيّة ذات المتغيرات الثلاثة x و y و z بشكل حصريّ على الحدود x2 و y2 و z2 و xy و xz و yz و x و y و z و ثابت:
f ( x , y , z ) = a x 2 + b y 2 + c z 2 + d x y + e x z + f y z + g x + h y + i z + j , {displaystyle f(x,y,z)=ax^{2}+by^{2}+cz^{2}+dxy+exz+fyz+gx+hy+iz+j,}
بالإضافة إلى أحد المعاملات a أو b أو c أو d أو e أو f للحدود ذات الدرجة الثانية، و يجب أن يكون أحدها على الأقل لا يساوي الصفر. يكون للدالةالتربيعيّة أحادية المتغير، يكون لها الشكل الآتي[1]
f ( x ) = a x 2 + b x + c , a ≠ 0 {displaystyle f(x)=ax^{2}+bx+c,quad aneq 0}
في حالة المتغير الواحد، يكون الرسم البياني بشكل قطع مكافئ يكون محور تناظره موازٍ للمحور y كما هو مُوضح في الشكل إلى اليسار. أيضاً تُدعى الدالة التربيعيّة فيما لو ساوَت الصفر المعادلة التربيعيّة. و تكون حلول هذه المعادلة أحاديّة المتغير جُذُور الدالة التربيعيّة أما في حالة الدالة ثنائية المتغيِّرات x و y، يكون للدالة الشكل الآتي
f ( x , y ) = a x 2 + b y 2 + c x y + d x + e y + f {displaystyle f(x,y)=ax^{2}+by^{2}+cxy+dx+ey+f,!}
و يكون في هذه الحالة a أو b أو c على الأقل لا تساوي الصفر، وإن مُعادلة هذه الدالة، أي عندما تساوي هذه الدالة صفراً، فإن المعادلة ستعطي قطعاً مخروطيَّاً (دائرة أو قطع ناقص أو قطع مكافئ أو قطع زائد). عموماً، يمكن أن يكون هناك عدد كبير من المتغيرات، وفي هذه الحالة تُدعى السطوح الناتجة بالسطوح من الدرجة الثانية أو السطوح التربيعيّة، ولكن يجب أن تكون أعلى درجة هي الدرجة الثانية، كـ x2, xy, yz إلخ.
شكال الدالة التربيعيّة ذات المتغير الواحد
يمكن التعبير عن الدالة التربيعيّة وحيدة المتغير بثلاثة صيغ:[2]
- f ( x ) = a x 2 + b x + c {displaystyle f(x)=ax^{2}+bx+c,!} يُدعى الشكل المعياريّ
- f ( x ) = a ( x − r 1 ) ( x − r 2 ) {displaystyle f(x)=a(x-r_{1})(x-r_{2}),!} يُدعى الشَّكل المُفَكَّك (المُحلَّل إلى عوامل)، حيث r1 وr2 جذور للدالة التربيعيّة وحلول للمعادلة التربيعيّة (من الدرجة الثانية) الموافقة لهذه الدالة.
- f ( x ) = a ( x − h ) 2 + k {displaystyle f(x)=a(x-h)^{2}+k,!} يُدعى الشكل المُتَّجِهيّ h وkوx وy هي إحداثيّات المتجه على التوالي.
للمعامل a القيمة ذاتها في الأشكال الثلاثة. و للتحويل من الشكل المعياري إلى الشكل المُفكَّك (المحلل إلى عوامله)، يحتاج المرء فقط للصيغة التربيعيّة لتحديد الجذرين r1 وr2. وللتحويل من الشكل المعياريّ إلى الشكل المتجهيّ، يحتاج المرء إلى القيام بعملية تُدعى إكمال المربع. وللتحويل من الشكل المُفكَّك (المحلل إلى عوامله) إلى الشكل المعياريّ، يحتاج المرء إلى مضاعفة و/أو توسيعها و/أو نشر العوامل.
Published: Mar 14, 2020
Latest Revision: Mar 14, 2020
Ourboox Unique Identifier: OB-747025
Copyright © 2020