Теорема Пифагора
Сложно представить, но в научной литературе существует 367 доказательств теоремы Пифагора. В школьной программе мы проходим гораздо меньше — в этом материале познакомимся с главными формулами и их доказательствами.
Основные Понятия
Теорема Пифагора, определение: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Гипотенуза — сторона, лежащая напротив прямого угла.
Катет — одна из двух сторон, образующих прямой угол.
Формула Теоремы Пифагора выглядит так:
a2 + b2 = c2,
где a, b — катеты, с — гипотенуза.
Из этой формулы можно вывести следующее:
- a = √c2 − b2
- b = √c2 − a2
- c = √a2 + b2
Для фигуры со сторонами a, b и c, где c самая длинная сторона действуют следующие правила:
- если c2 < a2 + b2 , значит угол, обращенный к стороне c, является острым.
- если c2 = a2 + b2 , значит угол, обращенный к стороне c, является прямым.
- если c2 > a2 +b2 , значит угол, обращенный к стороне c, является тупым.
Теорема Пифагора. Доказательство
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Дано: ∆ABC, в котором ∠C = 90º.
Доказать: a2 + b2 = c2.
Пошаговое доказательство:
- Проведём высоту из вершины C на гипотенузу AB, основание обозначим буквой H.
- Прямоугольная фигура ∆ACH подобна ∆ABC по двум углам:
∠ACB =∠CHA = 90º,
∠A — общий.
- Также прямоугольная фигура ∆CBH подобна ∆ABC:
∠ACB =∠CHB = 90º,
∠B — общий.
- Введем новые обозначения: BC = a, AC = b, AB = c.
- Из подобия треугольников получим: a : c = HB : a, b : c = AH : b.
- Значит a2 = c * HB, b2 = c * AH.
- Сложим полученные равенства:
a2 + b2 = c * HB + c * AH
a2 + b2 = c * (HB + AH)
a2 + b2 = c * AB
a2 + b2 = c * c
a2 + b2 = c2
Теорема доказана.
Наглядное доказательство теоремы Пифагора
Обратная теорема Пифагора. Доказательство
Если сумма квадратов двух сторон треугольника равна квадрату третьей стороны, то такая фигура является прямоугольной.
Дано: ∆ABC
Доказать: ∠C = 90º
Пошаговое доказательство:
- Построим прямой угол с вершиной в точке C₁.
- Отложим на его сторонах отрезки C₁A₁ = CA и C₁B₁ = CB.
- Проведём отрезок A₁B₁.
- Получилась фигура ∆A₁B₁C₁, в которой ∠C₁=90º.
- В этой фигуре ∆A₁B₁C₁ применим теорему Пифагора: A₁B₁2 = A₁C₁2 + B₁C₁2.
- Таким образом получится:
- Значит, в фигурах треугольниках ∆ABC и ∆A₁B₁C₁:
- C₁A₁ = CA и C₁B₁ = CB по результату построения,
- A₁B₁ = AB по доказанному результату.
- Поэтому, ∆A₁B₁C₁ = ∆ABC по трем сторонам.
- Из равенства фигур следует равенство их углов: ∠C =∠C₁ = 90º.
Обратная теорема доказана.
Решение задач
Published: Nov 1, 2021
Latest Revision: Nov 1, 2021
Ourboox Unique Identifier: OB-1219600
Copyright © 2021